TT. Jet bundles

1. Def: For M, N mfs, fig: M-> N smooth, xeM, y=f(x)=g(x), we say 1. I has first order contact with g at x dfx = dgx: TxM -> TyN if 2. I has keth order contact with g at x if df: TM->TN has (k-1) st order contact with dg at every point in T.M. This defines an equivalence relation, denoted by fryg at x. (Exercise) 3. $J^{k}(M, N)_{x,y} := set of equivalence classes$

under n_k at xon $2 f \in C^{\infty}(M,N) | f(x) = y f$

4.
$$J^{k}(M,N) := \bigcup J^{k}(M,N)_{xy}$$

 $(x,y) \in M \times N$
An element σ in $J^{k}(M,N)$ is called
 α k-jet (of maps) from M to N .

5. Let
$$\sigma \in \mathcal{J}^{k}(M,N)$$
. Then there is a pair
 (x,y) with $\sigma \in \mathcal{J}^{k}(M,N)_{xy}$.
 \times is the source of σ , y the target,
 $s : \mathcal{J}^{k}(M,N) \rightarrow M$ the source map and
 $t : \mathcal{J}^{k}(M,N) \rightarrow N$ the target map.

6. The canonically defined (!) map
$$(for f: M \rightarrow N \text{ smooll})$$

 $j^{k}f: M \rightarrow J^{k}(M,N)$, $x \mapsto EfJ \in J^{k}(M,N)_{x,f(x)}$
is called the k-jet (extension) of f .

• $J'(M,N) \cong Hom(TM,TN)$ as vector bundles over MXN. The fiber over (X,Y) is

$$\begin{cases} \left\{ \sigma \in \mathcal{J}'(M,N) \right\} \text{ scorex}, \text{ tcorey } f. \text{ If } f \\ \text{vepresents } \sigma, \text{ then } df_x \in \text{Hom}(T_xM,T_yN). \\ \text{This defines a diffeom. } I: \mathcal{J}'(M,N) \rightarrow \text{Hom}(\mathcal{T}M,\mathcal{T}N) \\ \text{velow} \\ \text{with } \text{sx} f = \pi \sigma \mathcal{F} \text{ where } \pi \cdot \text{Hom}(\mathcal{T}M,N) \rightarrow \text{Max} \\ \cdot \text{For } k > 1 \quad \mathcal{J}^k(M,N) \xrightarrow{->} \mathcal{J}^{k-1}(M,N) \\ \cdot \text{For } k > 1 \quad \mathcal{J}^k(M,N) \xrightarrow{->} \mathcal{J}^{k-1}(M,N) \\ \text{are smooth fiberations, but yet vector bondles} \\ (unless N = \mathbb{R}^n) \\ \text{Two valual operations (push forwards & pullbacks):} \\ \cdot h: N_i \rightarrow N_2 \text{ smooth induces a map} \\ h_x: \mathcal{J}^k(M,N_i) \xrightarrow{->} \mathcal{J}^k(M,N_2) \\ \mathcal{J}'(M,N_i) \xrightarrow{>} \mathcal{J}^k(M,N_2) \\ \mathcal{J}'(M,N_i) \xrightarrow{>} \mathcal{J}^k(M,N_2) \\ (unless a map) \\ f: M \rightarrow N_i \text{ diffeom. induces a map} \\ \cdot g: M_i \xrightarrow{->} M_2 \quad diffeom. induces a map \\ \cdot g: M_i \xrightarrow{->} M_2 \quad diffeom. induces a map \\ \cdot g: M_i \xrightarrow{->} M_2 \quad diffeom. induces a map \\ \cdot g: M_i \xrightarrow{->} M_2 \quad diffeom. induces a map \\ \cdot g: M_i \xrightarrow{->} M_2 \quad diffeom. induces a map \\ \cdot g: M_i \xrightarrow{->} M_2 \quad diffeom. induces a map \\ \cdot g: M_i \xrightarrow{->} M_2 \quad diffeom. induces a map \\ \cdot g: M_i \xrightarrow{->} M_2 \quad diffeom. induces a map \\ \cdot g: M_i \xrightarrow{->} M_2 \quad diffeom. induces a map \\ \cdot g: M_i \xrightarrow{->} M_i = \mathcal{J}^k(M,M) \\ \cdot g: M_$$

$$g^*: \mathcal{J}(\mathcal{M}_{z}, \mathbb{N}) \rightarrow \mathcal{J}(\mathcal{M}_{1}, \mathbb{N})$$

 $J^{\mu}(\mathcal{M}_{z}, \mathbb{N}) \rightarrow \mathcal{T} \longmapsto \mathcal{L} f \circ g \mathcal{J} \in \mathcal{J}^{k}(\mathcal{M}_{1}, \mathbb{N}) g'(x), \gamma$
 $f repr. \tau / \mathcal{L} f \mathcal{J} = \tau$

2. Thm: For M, N mfs
1.
$$\forall k \in \mathbb{N}$$
; $J^{k}(M, \mathbb{N})$ is a (smooth) uf.
(Q: What's the dimension?)
2. $J^{k}(M, \mathbb{N}) \xrightarrow{s}_{x \in \mathbb{N}} M_{x}$ are submersions.
3. If f: M-sN smooth, then $j^{k}f = M \rightarrow J^{k}(M, \mathbb{N})$ is
smooth.

Proof:
I. We sketch the construction of charts:
Let
$$P_m^k$$
 be the vector space of polynomials
 $p(t_{i,...,t_m}) = \sum_{\substack{|\alpha|=k\\ |\alpha|=1}}^{|\alpha|=k} \alpha_{\alpha} \cdot t^{\alpha} - (t_i^{\alpha} \cdots t_m^{\alpha_m})$
and set $P_{m,n}^k := \bigoplus_{\substack{i=1\\ i=1}}^{n} P_m^k$

If VCR open, then there is a canonical bijection

$$T_{U,V}: J^{k}(U,V) \rightarrow U \times V \times P_{m,n}^{k}$$

$$\sigma \longmapsto (x_{o}, y_{o}, T_{k} f_{i}(x_{o}), ..., T_{k} f_{n}(x_{o}))$$

where $x_o = S(\sigma)$, $y_o = E(\sigma)$ (i.e. $\sigma \in J(U,V)_{x_o,y_o}$ $f: U_{-7}V$ representing σ , $f = (f_{n_1}, \dots, f_n)$

This is well-def. & bijective.

Now for UCM, VCN with charty $\phi: U \rightarrow U' \subset \mathbb{R}^m$ and $\psi: V \rightarrow V' \subset \mathbb{R}^n$ define

$$\mathcal{T}_{\mathcal{U},\mathcal{V}} := \mathcal{T}_{\mathcal{U},\mathcal{V}'} \circ (\Phi')^* \mathcal{Y}_* : \mathcal{J}^k(\mathcal{U},\mathcal{V}) \to \mathcal{U} \times \mathcal{V} \times \mathcal{P}_{\mathcal{M},n}^k$$

MA

Locally, $\mathcal{D}^{\prime}(M,N)$ looks like $U \times V \times M_{m,n}(\mathbb{R})$ and $S^{r} := U \times V \times M_{m,n}(\mathbb{R})$ is a submit. Given f smooth we have $\Sigma^{i}(f) = (j^{r}f)^{-1}(S^{m-i})$ if $M \ge n$ $or(S^{n-i})$ if $M \le n$